Entity-based Classification of Twitter Messages
نویسندگان
چکیده
Twitter is a popular micro-blogging service on the Web, where people can enter short messages, which then become visible to some other users of the service. While the topics of these messages varies, there are a lot of messages where the users express their opinions about some companies or their products. These messages are a rich source of information for companies for sentiment analysis or opinion mining. There is however a great obstacle for analyzing the messages directly: as the company names are often ambiguous (e.g. apple, the fruit vs. Apple Inc.), one needs first to identify, which messages are related to the company. In this paper we address this question. We present various techniques for classifying tweet messages containing a given keyword, whether they are related to a particular company with that name or not. We first present simple techniques, which make use of company profiles, which we created semi-automatically from external Web sources. Our advanced techniques take ambiguity estimations into account and also automatically extend the company profiles from the twitter stream itself. We demonstrate the effectiveness of our methods through an extensive set of experiments. Moreover, we extensively analyze the sources of errors in the classification. The analysis not only brings further improvement, but also enables to use the human input more efficiently.
منابع مشابه
A High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملA hybrid model of sentimental entity recognition on mobile social media
With new forms of media such as Twitter becoming increasingly popular, the Internet is now the main conduit of individual and interpersonal messages. A considerable amount of people express their personal opinions about news-related subject through Twitter, a popular SNS platform based on human relationships. It provides us a data source that we can use to extract peoples’ opinions which are im...
متن کاملBidirectional LSTM for Named Entity Recognition in Twitter Messages
In this paper, we present our approach for named entity recognition in Twitter messages that we used in our participation in the Named Entity Recognition in Twitter shared task at the COLING 2016 Workshop on Noisy User-generated text (WNUT). The main challenge that we aim to tackle in our participation is the short, noisy and colloquial nature of tweets, which makes named entity recognition in ...
متن کاملTUMS: Twitter-Based User Modeling Service
Twitter is today’s most popular micro-blogging service on the Social Web. As people discuss various fresh topics, Twitter messages (tweets) can tell much about the current interests and concerns of a user. In this paper, we introduce TUMS, a Twitter-based User Modeling Service, that infers semantic user profiles from the messages people post on Twitter. It features topic detection and entity ex...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCSA
دوره 9 شماره
صفحات -
تاریخ انتشار 2012